GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S3

Paper E MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S3 Paper E – Marking Guide

1.	(<i>a</i>)	total = 500 \therefore require $\frac{1}{5}$	M1	M1		
		giving 33, 28, 21, 18 respectively	A1			
	(b)	e.g. know that each group is represented proportionately provides data for each strata as well for whole	B2	(4)		
2.	$H_0: 0$	discrete uniform is a suitable model	B1			
	exp.	freqs = $80 \div 5 = 16$	M1 A1			
	1	$O \qquad E \qquad (O-E) \qquad \frac{(O-E)^2}{E}$				
		16 16 0 0				
		20 16 4 1				
		14 16 ⁻ 2 0.25				
		17 16 1 0.0625				
		13 16 -3 0.5625				
	$\therefore \Sigma$	$\frac{(O-E)^2}{E} = 1.875$	M1 A2			
	v = 5	$5 - 1 = 4, \chi^2_{\text{crit}}(10\%) = 7.779$	M1 A1			
	1.875	$5 < 7.779$ \therefore do not reject H ₀				
	discr	ete uniform is a suitable model supporting psychologist's theory	Al	(9)		
3	(a)	$H_{0}: \mu = 5.6^{\circ}, H_{1}: \mu > 5.6^{\circ}, H_{2}: \mu > 5.6^{\circ}, \mu > 5.6^{\circ}$	B1			
5.	(u)	5% level \therefore C.R. is $z > 1.6449$	B1			
		require = $\frac{\bar{X} - 66}{23} > 1.6449$	M2 A1			
		$\frac{2.3}{\sqrt{150}}$				
		giving C.R. $X > 66.31$ inches	A1			
	<i>(b)</i>	$\overline{X} = \frac{832 \times 12}{150} = 66.56$	M1 A1			
		66.56 > 66.31 : reject H ₀	M1			
		there is evidence that mean height of women is $> 5'6''$	A1	(10)		
4						
4.	(a)	capacity 1.1 1.3 1.6 2.1 2.4 2.6 2.8 3.0				
		sales 527 632 840 619 350 425 487 401				
		cap. rank 8 7 6 5 4 3 2 1				
		sales rank 4 2 1 3 8 6 5 7				
		d^2 16 25 25 4 16 9 9 36				
		$\Sigma d^2 = 140$	M2 A2			
		$r_s = 1 - \frac{6 \times 140}{8 \times 63} = -0.6667$	M1 A1			
	(b)	$\mathbf{H}_0: \boldsymbol{\rho} = 0 \mathbf{H}_1: \boldsymbol{\rho} \neq 0$	B1			
		$n = 8, 5\%$ level \therefore C.R. is $r_s < -0.7381$ or $r_s > 0.7381$	M1 A1			
		not in C.R. \therefore no evidence of correlation	A1			
	(c)	need variables to be jointly normally distributed for pmcc test engine capacities are discrete so use Spearman's	B2	(12)		

_				
5.	(<i>a</i>)	let $A =$ amount side length of red cube is longer than blue cube	N/1 A 1	
		$N(14.5 - 12.2, 10.0 + 9.0) = \sim N(2.5, 25)$	MI AI M1	
		P(T > 0) = 1(Z > 0) = $P(T > 0.14) = 1 = 0.5557 = 0.4442$		
		$-\Gamma(Z > 0.14) - \Gamma = 0.5557 - 0.4445$	MIAI	
	<i>(b)</i>	let C = amount red tower is taller than blue tower		
		$\therefore C \sim N(4 \times 14.5 - 5 \times 12.2, 4 \times 16 + 5 \times 9) = \sim N(^{-3}, 109)$	M1 A2	
		$P(C > 0) = P(Z > \frac{0.15}{\sqrt{109}})$	MI	
		= P(Z > 0.29) = 1 - 0.6141 = 0.3859	M1 A1	
	(c)	e.g. likely to use smaller blocks higher up the tower	B1	(12)
6.	(a)	expected freq. family/ITV = $\frac{101 \times 132}{240}$ = 55.55		
		family/Ch4 = $\frac{85 \times 132}{240}$ = 46.75		
		sports/ITV = $\frac{101 \times 66}{240}$ = 27.78		
		sports/Ch4 = $\frac{85 \times 66}{23.38}$ = 23.38	M1 A2	
		giving expected freqs $55.55 \ 46.75 \ 29.70$		
		27.78 23.38 14.84		
		17.67 14.87 9.46	M1 A1	
		H_0 : no difference in proportion of adverts on different channels H_1 : difference in proportion of adverts on different channels	B1	
		$O = E = (O - E) = \frac{(O - E)^2}{2}$		
		E = (0 - 2) = E 69 55 55 13 45 3 2566		
		35 46.75 ⁻ 11.75 2.9532		
		28 29.70 -1.7 0.0973		
		20 27.78 77.78 2.1788		
		28 23.38 4.62 0.9129 18 14.84 3.16 0.6729		
		12 17.67 -5.67 1.8194		
		22 14.87 7.13 3.4188		
		8 9.46 -1.46 0.2253		
		$\therefore \Sigma \frac{(O-E)^2}{E} = 15.535$	M1 A3	
		$v = 4, \chi^2_{\text{crit}}(5\%) = 9.488$	M1 A1	
		15.535 > 9.488 ∴ significant		
		there is evidence of different proportion of adverts on different channels	A1	
	(b)	e.g. advertisers perception of the type of people who watch each channel	B1	(14)
7.	<i>(a)</i>	when a sample from any dist. is large, the dist. of the sample mean is		
	. ,	approximately normal with same mean and variance $\frac{\sigma^2}{\sigma^2}$	B3	
	(1)		5.0	
	(b)	binomial with $n = 10$, $p = \frac{1}{6}$	B 2	
	(c)	$\mathrm{mean} = np = 10 \times \frac{1}{6} = \frac{5}{3}$	A1	
		variance = $npq = 10 \times \frac{1}{6} \times \frac{5}{6} = \frac{25}{18}$	M1 A1	
	(<i>d</i>)	let $X =$ no. of sixes when throw 10 dice $\therefore X \sim B(10, \frac{1}{6})$		
		$\therefore \ \overline{X} \sim N(\frac{5}{3}, \frac{\frac{25}{18}}{100}) = \sim N(\frac{5}{3}, \frac{1}{72})$	M1 A2	
		P($\overline{X} > 1.8$) = P(Z > $\frac{1.8 - \frac{3}{3}}{\sqrt{\frac{1}{12}}}$)	M1	
		M1 A1	(14)	

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	sampling	goodness of fit, discrete uniform	hyp. test on mean	Spearman's, hyp. test	linear comb. of Normal r.v.	conting. table	CLT, dist. of sample mean	
Marks	4	9	10	12	12	14	14	75
Student								