GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S3

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

S3 Paper E - Marking Guide

1. (a) total $=500 \therefore$ require $\frac{1}{5} \quad$ M1
giving 33, 28, 21, 18 respectively A1
(b) e.g. know that each group is represented proportionately provides data for each strata as well for whole

B2
(4)
2. H_{0} : discrete uniform is a suitable model
H_{1} : discrete uniform is not a suitable model
B1
exp. freqs $=80 \div 5=16$

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
16	16	0	0
20	16	4	1
14	16	-2	0.25
17	16	1	0.0625
13	16	-3	0.5625

$\therefore \Sigma \frac{(O-E)^{2}}{E}=1.875$
M1 A2
$v=5-1=4, \chi_{\text {crit }}^{2}(10 \%)=7.779$
M1 A1
$1.875<7.779 \therefore$ do not reject H_{0}
discrete uniform is a suitable model supporting psychologist's theory
A1
(9)
3.
(a) $\mathrm{H}_{0}: \mu=5^{\prime} 6^{\prime \prime} \quad \mathrm{H}_{1}: \mu>5^{\prime} 6^{\prime \prime}$
B1
5% level \therefore C.R. is $z>1.6449$
B1
require $=\frac{\bar{X}-66}{\frac{2.3}{\sqrt{150}}}>1.6449$
giving C.R. $\bar{X}>66.31$ inches
M2 A1
$\bar{X}=\frac{832 \times 12}{150}=66.56$
A1
$\begin{array}{ll}\text { (b) } \bar{X}=\frac{832 \times 12}{150}=66.56 & \text { M1 A1 } \\ 66.56>66.31 \therefore \text { reject } H_{0} & \text { M1 } \\ \text { there is evidence that mean height of women is }>5^{\prime} 6^{\prime \prime} & \text { A1 }\end{array}$
4. (a)

capacity	1.1	1.3	1.6	2.1	2.4	2.6	2.8	3.0
sales	527	632	840	619	350	425	487	401
cap. rank	8	7	6	5	4	3	2	1
sales rank	4	2	1	3	8	6	5	7
d^{2}	16	25	25	4	16	9	9	36

$\Sigma d^{2}=140$
M2 A2
$r_{s}=1-\frac{6 \times 140}{8 \times 63}={ }^{-} 0.6667 \quad$ M1 A1
(b) $\quad \mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho \neq 0$

B1
$n=8,5 \%$ level \therefore C.R. is $r_{s}<{ }^{-} 0.7381$ or $r_{s}>0.7381$
M1 A1
not in C.R. \therefore no evidence of correlation
(c) need variables to be jointly normally distributed for pmec test
engine capacities are discrete so use Spearman's
B2
5. (a) let $A=$ amount side length of red cube is longer than blue cube

$$
\begin{align*}
& \therefore A \sim \mathrm{~N}(14.5-12.2,16.0+9.0)=\sim \mathrm{N}(2.3,25) \\
& \mathrm{P}(A>3)=\mathrm{P}\left(Z>\frac{3-2.3}{5}\right) \\
& \quad=\mathrm{P}(Z>0.14)=1-0.5557=0.4443
\end{align*}
$$

M1 A1
(b) let $C=$ amount red tower is taller than blue tower
$\therefore C \sim \mathrm{~N}(4 \times 14.5-5 \times 12.2,4 \times 16+5 \times 9)=\sim \mathrm{N}(-3,109)$
$\mathrm{P}(C>0)=\mathrm{P}\left(Z>\frac{0+3}{\sqrt{109}}\right)$

$$
=\mathrm{P}(Z>0.29)=1-0.6141=0.3859
$$

(c) e.g. likely to use smaller blocks higher up the tower

B1
6. (a) expected freq. family/ITV $=\frac{101 \times 132}{240}=55.55$

$$
\begin{aligned}
& \text { family/Ch } 4=\frac{85 \times 132}{240}=46.75 \\
& \text { sports/ITV }=\frac{101 \times 66}{240}=27.78 \\
& \text { sports/Ch } 4=\frac{85 \times 66}{240}=23.38 \\
& \text { giving expected freqs } 55.55 \\
& 27.75 \\
& 27.78 \\
& 23.38 \\
& 17.67
\end{aligned} 14.70
$$

M1 A2

M1 A1
$\mathrm{H}_{0}:$ no difference in proportion of adverts on different channels
H_{1} : difference in proportion of adverts on different channels
B1

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
69	55.55	13.45	3.2566
35	46.75	-11.75	2.9532
28	29.70	-1.7	0.0973
20	27.78	-7.78	2.1788
28	23.38	4.62	0.9129
18	14.84	3.16	0.6729
12	17.67	-5.67	1.8194
22	14.87	7.13	3.4188
8	9.46	-1.46	0.2253

$\therefore \Sigma \frac{(O-E)^{2}}{E}=15.535$
M1 A3
$v=4, \chi_{\text {crit }}^{2}(5 \%)=9.488$
M1 A1
$15.535>9.488 \therefore$ significant
there is evidence of different proportion of adverts on different channels A1
(b) e.g. advertisers perception of the type of people who watch each channel B1
7. (a) when a sample from any dist. is large, the dist. of the sample mean is approximately normal with same mean and variance $\frac{\sigma^{2}}{n} \quad$ B3
(b) binomial with $n=10, p=\frac{1}{6} \quad$ B2
(c) mean $=n p=10 \times \frac{1}{6}=\frac{5}{3} \quad \mathrm{~A} 1$
variance $=n p q=10 \times \frac{1}{6} \times \frac{5}{6}=\frac{25}{18} \quad$ M1 A1
(d) let $X=$ no. of sixes when throw 10 dice $\therefore X \sim \mathrm{~B}\left(10, \frac{1}{6}\right)$

$$
\begin{array}{rlrl}
\therefore \bar{X} \sim \mathrm{~N}\left(\frac{5}{3}, \frac{\frac{25}{18}}{100}\right)=\sim \mathrm{N}\left(\frac{5}{3}, \frac{1}{72}\right) & & \text { M1 A2 } \\
\begin{aligned}
\mathrm{P}(\bar{X}>1.8) & =\mathrm{P}\left(Z>\frac{1.8-\frac{5}{3}}{\sqrt{\frac{1}{72}}}\right)
\end{aligned} & \text { M1 } \\
& =\mathrm{P}(Z>1.13)=1-0.8708=0.1292 & & \text { M1 A1 }
\end{array}
$$

Performance Record - S3 Paper E

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	sampling	$\begin{array}{\|l\|} \hline \text { goodness } \\ \text { of fit, } \\ \text { discrete } \\ \text { uniform } \end{array}$	$\begin{array}{\|l} \hline \text { hyp. test } \\ \text { on } \end{array}$	$\begin{aligned} & \hline \text { Spearman's, } \\ & \text { hyn test } \end{aligned}$ hyp. test	$\begin{aligned} & \hline \begin{array}{l} \text { linear } \\ \text { comb. of } \\ \text { Normal r.v. } \end{array} \end{aligned}$	$\begin{aligned} & \text { conting. } \\ & \text { table. } \end{aligned}$	$\begin{aligned} & \text { CLT, } \\ & \text { dist. } \\ & \text { sample } \\ & \text { seane } \end{aligned}$	
Marks	4	9	10	12	12	14	14	75
Student								

